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LE’LTER TO THE EDITOR 

Time continuous limit for the Baxter model 

Valter Libero and J R Drugowich de Felicio 
Departamento de Fisica e Ci&ncia dos Materiais, Instituto de Fisica e Quimica de SBo 
Carlos-USP, Caixa Postal 369, 13560 SHo Carlos, SP, Brasil 

Received 21 June 1983 

Abstract. We obtain the associated Hamiltonian for the symmetric eight-vertex model 
by taking the time-continuous limit in an equivalent Ashkin-Teller model. The result is 
a Heisenberg Hamiltonian with coefficients J x ,  Jy  and J,  identical to those found by 
Sutherland for choices of the parameters a, b, c and d that bring the model close to the 
transition. 

The change in the operators is accomplished explicitly, the relation between the 
crossover operator for the Ashkin-Teller model and the energy operator for the eight- 
vertex model being obtained in a transparent form. 

The work of McCoy and Wu (1968), showing that the XXZ Hamiltonian commutes 
with the transfer matrix of the six-vertex model, inspired further research into the 
possible existence of other similar relations. Two years later, Sutherland (1970) found 
that for the symmetric eight-vertex model there is also a Hamiltonian commuting 
with the transfer matrix Tsv, namely the Hermitian XYZ Hamiltonian 

with coefficients given by 

J ,  = (a6 + cd) ,  J,  = (a6 - c d ) ,  J ,  = ( ~ ~ + 6 ~  - c 2 - d 2 ) / 2 ,  (2a, 6, c )  

where a, 6, c and d are the vertex weights (see figure 1). It is worthwhile to mention 
that the Heisenberg Hamiltonian (1) is exactly the logarithmic derivative of the transfer 
matrix T ( v ,  77, k) of the symmetric eight-vertex (8v) model with respect to v at the 
value v = 77, i.e. 

(3) 

Equation (3) was first obtained by Baxter (1972), who used the convenient elliptic 

H X Y Z  = ( a / a v )  log T(u,  77, k)l,=,. 

1 2 3 4 5 6 I 8 
a a b b C C d d 

Figure 1. The eight arrow configurations allowed at a vertex with the corresponding vertex 
weights. 
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parametrisation for the vertex weights, 

a : b : c : d = sn(v  + 77, k )  : sn(v - 77, k )  : sn(277, k )  : k sn(u + 77, k)sn(v  - 77, k)sn(277, k ) ,  

to solve the model in the principal domain 

(4 1 

C > a + b + d ,  ( 5 )  

with non-negative weights. In particular, he showed that the symmetric 8v model 
undergoes a phase transition at the border 

c = a + b + d .  (6) 

In this letter we show that, in the critical region associated with this phase transition, 
the Hamiltonian in (1) can be derived through an alternative procedure, namely the 
time-continuous limit (Fradkin and Susskind 1978). This limit can nor be taken in the 
king representation for the Baxter model (Kadanoff and Wegner 1971, Wu 1971), 
shown in figure 2, because in this formulation of the model next-nearest-neighbour 
and strictly isotropic: interactions are involved. To circumvent this difficulty we write 
the symmetric 8v model in the Ashkin-Teller (1943) representation, which possesses 
only first-neighbour interactions in well defined directions (see figure 3). 

A 

Figure 2. Ising representation for the Baxter model. 
The four-spin coupling involves first and second 
neighbours. 
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Figure 3. king representation for the Ashkin-Teller 
model. The four-spin coupling involves only first 
neighbours. 

The Ashkin-Teller (AT) model is defined by the action (Fan 1972) 

- Z / ~ T  = (Koa + ~ ~ ~ p  ( r ) p  ( r  +&) +KZ,u(r)u(r +tu) 

+ K 4 a ~ ( r ) u ( r  +tab ( r ) p  ( r  + tun)), 
r, a 

(7) 

where u and p are classical Ising variables, r = (i, k )  labels the lattice sites and & 
are unit vectors in the x (spatial) and 7 (temporal) directions. The coupling constants 
are chosen so that the AT model be equivalent to a normal (non-staggered) 8v model 
in the medial lattice (Wegner 1972, Wu 1977), as shown in figure 4; the spatial 

t The four-spin coupling does not allow us to separate the interactions into temporal and spatial ones. 
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Figure 4. The original lattice for the Ashkin-Teller model (full circles and broken lines) 
and the medial lattice where lies the equivalent eight-vertex model. 

couplings are then given by 

exp(4Kox) = (a2-d2)(c2-b2)/16, 

exp(4K2,) = (a + d ) ( a  - d ) / ( c  + b ) ( c  - b ) ,  

exp(4K1,) = (a + d ) ( b  + c ) / ( a  -d)(c - b ) ,  
@a, 6 )  

exp(4K4,) = (a +d) (c  - b ) / ( c  + b ) ( a  -4, 
(8c, d )  

and the temporal (T) ones by 

exp(4Ko.,) = (a2-c2)(d2--b2)/16, exp(4K1,) = (a  + c ) ( d + b ) / ( a  - c ) ( d - b ) ,  
(9a, 6)  

(9c 1 
( 9 4  

exp(4K2,) = (a +c)(a - c ) / ( d + b ) ( d  - b ) ,  

exp(4K4,) = (a + c)(d - b ) / ( a  -c)(d + 6). 

The transfer matrix for this model is given by 

X n {exP(Ko, +KIT +KZT + K ~ T ) [ I  + exp( - 2K1, - 2&,)p; 
i 

+exp( - 2Kz, - 2K4,)a; + exp( - 2K1, - 2K~,)a~p;]},  (10) 
where a;, af and p:, p; are two sets of Pauli matrices. As a first step towards taking 
the time-continuous limit we observe that the off -diagonal term of the transfer matrix 
can be rewritten in an exponential form: 

n{. I . . } = e x p ( ~ ( ~ :  i +K:~;+K:U;+K:~;~;)), (1 1) 

provided that the starred couplings satisfy 

Ko* =Ko,+In2,  KT =Kzx, 
K ;  =K1,, K: = K4,. 

Next, following Fradkin and Susskind (1978) we consider the weak coupling limit 

Kix + 0, i = 1 , 2  or 4, (13) 
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for which the evolution in the T direction is described by the Hamiltonian 

H =  -T- l logT=  -KT: l o g T  

= -C (P;P;+l  +ru;u;+l -Au;u;+ lc l fP;+ l  +U) +rP: - A + L ; ) ,  (14) 
i 

where 

Equation (14) defines the time-continuous Hamiltonian; however, H is given in 
an unusual form. To compare with the exact result, equation ( l ) ,  two further steps 
are necessary. 

(A) Firstly we introduce a duality transformation by defining another set of 
operatorst 

in terms of which the Hamiltonian H (equation (14)) is written 

H = -C (77i*+1/2  +rufu;+l - A u f u f + 1 ~ ~ + 1 / 2  +U; + r ' 7 ; - 1 / 2 7 7 ; + 1 / 2  - A ~ 7 7 7 f - 1 / 2 7 7 ; + 1 / 2 ) .  
i 

(17) 

(B) Next, having a string of spins, separated by half of the original lattice parameter, 
which will be henceforth named (Tk (k = 0, 1, 1, $, . . . , N +i), we once again apply 
the dual transformation to all spins (Kohmoto et a1 1981): 

s:+1/4 = u;u;+1/2, s;+1/4 = fl d. 
k s j  

In terms of these operators the Hamiltonian H, after the rotation S' + S" and S" + - S', 
is 

2 N - 1  

H = - 1 (S lS; , ,  +ASYSY+l + r S f S f + l ) ,  
i = O  

which is equivalent to equation (1). As shown in figure 5 we have shrunk to one half 
the lattice parameter and displaced the origin by one fourth. 

The coefficients r and A on the right-hand side of (19) remain to be analysed. 
From (8) we find, in the limit Ki, + 0, 

r =  K2,/KiX = (U - c ) / ( d  + b ) ,  A =  - K 4 x / K i x = ( b - d ) / ( d + b ) ,  ( 2 0 ~ ~  6 )  

0 1  
V l V l V  r V  e x  I I\ I A ,  n n 

0 112 1 312 2 ... . . .  N-1 N - 1  i 
* 

0 1 2  3 4 s . . .  2 N - I  I 
I-a z 2 c c = 3 '3 = 3 = 

0 ?I4 314 514 714 914 1114 ... N-314 N-114 j 

Figure 5. (a) After the first duality transfomation (equation (16)) we have a chain with 
2h' points. ( 6 )  Below the axis we have the localisation of the new variables S (equation 
(18)). To make the notation easier we will use the variable i. 

t We are using periodic boundary conditions, so that N + l  =CL1, L 
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so that, in the limit a = c and b,d = O t ,  our results for r and A are identical to those 
found by Sutherland (1970). Indeed, from (1) and ( 2 )  we have in this approximation 

J ,  a 2 + b 2 - c 2 - d 2  ( a - c ) ( a + c ) + ( b + d ) ( b - d ) - ( a - c )  
J, 2(ab+cd)  2[c(b + d ) + ( a  - c ) b ]  ( b + d ) - r ’  

- - -= - 

(21b)  

Finally we remark on the possibility of obtaining, with this procedure, the relation 
between the energy operator for the 8v model and the crossover operator for the AT 
model. We start by rewriting the diagonal part on the right-hand side of (10) as 

J d - c d  c ( b - d ) + ( a - c ) b  b - d  2=-- =-- 
J, a b + c d - c ( b + d ) + ( u - c ) b - b + d - * ’  

2 2  2 2  
3 ~ 1 . x  + ~ 2 x  ) (p  ;k f+ 1 + r f ~ f + l )  + S ~ 1 x  - ~ 2 x  ) (P ;P f +  1 --(+fuf+l) + KdxUj rj+lp j CL j+ l ,  

(22 )  
hence exhibiting explicitly the energy ( u f ( ~ ; + ~  +pfpi++l)  and the crossover ( ~ f p ; + ~  - 
ufuf+l) operators for the AT model (Kadanoff and Brown 1979). We can then follow 
the effect of the transformations (A) and (B) in the crossover operator of the AT model, 

The AT crossover operator is hence transformed into the 8v energy operator. This 
result implies that for Kllx < K I x ,  in the absence of the crossover operator (KlX = K2*),  
we are at the critical temperature of the Baxter model. 

In conclusion we have shown that, using the AT representation of the 8v model, 
it is possible to obtain the time-continuous Hamiltonian for the Baxter model which 
coincides, in the critical region, with the result obtained by Sutherland (1970). 
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manuscript. 
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